
Report of the Working Group `Relativity for Celestial
Mechanics and Astrometry'

M. So�el

Lohrmann Observatory, Dresden Technical University, 01062 Dresden,

Germany

1. Introduction

This is a brief report on the work done by the IAU working group `Relativity
for Celestial Mechanics and Astrometry' that is well documented on the Working
Group (WG)web-site: http://rcswww.urz.tu-dresden.de/~lohrmobs/iauwg.html.
There one �nds a list of members, the circulars of the WG, related material and
references to relevant publications as well as some online documents containing
important formulas and explanations.

The �rst central task of the WG was to recommend some speci�c form of
the metric tensor g�� that is related to the distance ds of two neighboring points

in space-time with coordinates x� = (ct; xi) and x
� + dx

� by

ds
2 = g��(t; x

i) dx� dx�:

The metric tensor allows one to derive translational and rotational equations of
motion of bodies, to describe the propagation of light, the rates of atomic clocks
and to model the processes of observation. Meanwhile it is widely accepted that
in order to describe adequately modern astronomical observations one has to use
several relativistic reference systems. The barycentric celestial reference system
(BCRS) can be used to model the light propagation from distant celestial objects
as well as the motion of bodies within the solar system. The geocentric celestial
reference system (GCRS) is physically adequate to describe processes occurring
in the vicinity of the Earth (Earth's rotation, motion of Earth's satellites).

The necessity to use several reference systems can be understood from the
following. If we were to characterize terrestrial observers by the di�erence be-
tween their BCRS coordinates and the BCRS coordinates of the geocenter, the
positions of the observers relative to the geocenter would change with time also
due to purely relativistic coordinate e�ects (such as Lorentz contraction, etc.)
which have nothing to do with the Earth's rotation or geophysical factors and
vanish if one employs suitable GCRS coordinates instead. On the other hand,
the coordinate positions derived with VLBI observations are used to investi-
gate local geophysical processes and some adequate Geocentric RS allows one
to simplify their description. For these reasons the central task of the work-
ing group is to specify the metric tensors both in the BCRS and in the GCRS
and the corresponding space-time coordinate transformations between these two
systems.

Two advanced relativistic formalisms have been elaborated to tackle the
problem of astronomical reference frames in the �rst post-Newtonian approxi-
mation of general relativity. One formalism is due to Brumberg and Kopeikin
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(Brumberg and Kopeikin, 1989; Kopeikin, 1988; Brumberg, 1991; see also Klioner
and Voinov, 1993) and another one is due to Damour, So�el and Xu (Damour,
So�el, Xu, 1991, 1992, 1993, 1994, referred to as DSX I-IV). Although the for-
malisms look rather di�erent at �rst glance, it is mainly the concept of mass
multipole moments (potential coe�cients) at the �rst post-Newtonian level that
di�ers in the two formalisms. The new recommendations of the WG improve
and extend those from the IAU 1991 framework that will be recalled in the next
section.

2. The IAU 1991 framework

The IAU resolution A4(1991) contains nine recommendations, the �rst �ve of
which are directly relevant to our discussion.

In the �rst recommendation, the metric tensor in space-time coordinates
(t;x) centered at the barycenter of an ensemble of masses is recommended to be
written in the form

g00 = �1 +
2U(t;x)

c2
+O(c�4);

g0i = O(c�3); (1)

gij = �ij

�
1 +

2U(t;x)

c2

�
+ O(c�4) ;

where c is the speed of light in vacuum U is the sum of the gravitational po-
tentials of the ensemble of masses, and of a tidal potential generated by bodies
external to the ensemble, the latter vanishing at the barycenter. The algebraic
sign of U is taken to be positive.

This recommendation recognizes that space-time cannot be described by a
single coordinate system. The recommended form of the metric tensor can be
used not only to describe the barycentric celestial reference system of the whole
solar system resulting in the BCRS, but also to de�ne the geocentric celestial
reference system (GCRS) centered at the center of mass of the Earth with a
suitable function U , now depending upon geocentric coordinates. In analogy to
the GCRS a corresponding celestial reference system can be constructed for any
other body of the solar system.

In the second recommendation, the origin and orientation of the spatial
coordinate grids for the solar system (BCRS) and for the Earth (GCRS) are
de�ned. Notably it is speci�ed that the spatial coordinates of these systems
should show no global rotation with respect to a set of distant extragalactic
objects. It also speci�es that the SI (International System of Units) second and
the SI meter should be the physical units of proper time and proper length in
all coordinate systems. It states in addition that the time coordinates should be
derived from an Earth atomic time scale.

The third recommendation de�nes TCB (Barycentric Coordinate Time)
and TCG (Geocentric Coordinate Time) | the time coordinates of the BCRS
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and GCRS, respectively. Here we write (t = TCB; x
i) and (T = TCG;X

i)
for the respective coordinates. The recommendation also de�nes the origin
of the time scales (their reading on 1977 January 1, 0h 0m 0s TAI (JD =

2443144:5TAI) must be 1977 January 1, 0h 0m 32:184s) and declares that the
units of measurements of the coordinate times of all reference systems must co-
incide with the SI second and SI meter. The relationship between TCB and
TCG is given by a full 4-dimensional transformation

TCB � TCG = c
�2

"Z
t

t0

 
v
2
E

2
+ U(t;xE(t))

!
dt + v

i

E
r
i

E

#
+O(c�4); (2)

where xi
E
and v

i

E
are the barycentric coordinate position and velocity of the

geocenter, ri
E
= x

i
� x

i

E
with x

i the barycentric position of the observer, and

U(t;xE(t)) is the Newtonian potential of all solar system bodies apart from the
Earth evaluated at the geocenter.

In the fourth recommendation another time coordinate, Terrestrial Time
(TT ), is de�ned for the GRS. It di�ers from TCG by a constant rate only

TCG�TT = LG� (JD�2443144:5)�86400; LG � 6:969291�10�10; (3)

so that the unit of measurement of TT agrees with the SI second on the geoid.
TT represents an ideal form of TAI , the divergence between them being a con-
sequence of the physical defects of atomic clocks. It is also recognized that the
TT is nothing else than a rescaling of the GRS coordinate time TCG.

The �fth recommendation states that the old barycentric time TDB may
still be used where discontinuity with previous work is deemed to be undesirable.
In the notes to the third recommendation the relation of the TCB with TDB

given as

TCB�TDB = LB�(JD�2443144:5)�86400; LB � 1:550505�10�8: (4)

3. General framework for new conventions

3.1. New conventions for the Barycentric Celestial Reference System

The metric tensor of the Barycentric Celestial Reference System (BCRS) in the
�rst post-Newtonian approximation should be written in the form

g00 = �1 +
2w

c2
�

2w2

c4
+O(c�5);

g0i = �

4

c3
wi +O(c

�5); (5)

gij = �ij

�
1 +

2

c2
w

�
+ O(c�4) :
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Here, the post-Newtonian gravitational potential w generalizes the usual New-
tonian potential U and wi is the vector potential related with gravito-magnetic
type e�ects. The best reason for writing the metric in that form is a simplic-
ity argument. This is the most compact form to write the metric tensor to
�rst post-Newtonian order. Let us also note here that the potential w contains
also explicit post-Newtonian terms and, therefore, does not coincide with the
Newtonian potential. As is well known it makes no sense to distinguish be-
tween the Newtonian potential and explicit post-Newtonian terms. It is the
post-Newtonian potential w as a whole that plays a role in observations.

Note that this form (5) of the barycentric metric tensor implies the barycen-
tric spatial coordinates xi to satisfy the harmonic gauge condition. We rec-

ommend also to use the harmonic gauge for the barycentric coordinate time

t = TCB. The main arguments in favour of the harmonic gauge are:

� tremendous work on General Relativity has been done with the harmonic
gauge that was found to be a useful and simplifying gauge for all kinds of
applications;

� in contrast to the standard PN-gauge the harmonic gauge can be de�ned
to higher PN-orders, and in fact for the exact Einstein theory of gravity.

Assuming space-time to be asymptotically at (no gravitational �elds far
from the system), i.e.,

lim
r!1

t=const

g�� = diag(�1;+1;+1;+1)

in the standard harmonic gauge, the post-Newtonian �eld equations of General
Relativity are solved by

w(t;x) = G

Z
d
3
x
0
�(t;x0)

jx� x0j
+

1

2c2
G
@
2

@t2

Z
d
3
x
0
�(t;x0)jx� x0j ;

w
i(t;x) = G

Z
d
3
x
0
�
i(t;x0)

jx� x0j
; (6)

where

�(t;x) =
T
00 + T

ss

c2
; �

i(t;x) =
T
0i

c
:

T
�� = T

��(t; xi) are the components of the energy-momentum tensor in the
barycentric coordinate system and T ss = T

11+T 22+T 33. For many applications
explicit expressions for the gravitational mass and mass-current density, � and
�
i, will not be needed.

Since the integrations in eqs. (6) have to be taken over all the massive solar
system bodies A, the metric potentials, w and w

i, can be written as a sum of
the form

w =
X
A

wA; w
i =

X
A

w
i

A
:
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Here the potentials with index A are obtained from relations (6) with integrals
taken over the support of body A only. In the following we will use

wext =
X
A6=E

wA; w
i

ext =
X
A 6=E

w
i

A
;

where E stands for the Earth.

3.2. New conventions for the Geocentric Celestial Reference System

The metric tensor of the Geocentric Celestial Reference System (GCRS) (T;X i)
should be written in the same form as that of the BCRS:

G00 = �1 +
2W

c2
�

2W 2

c4
+O(c�5);

G0a = �

4

c3
Wa; (7)

Gab = �ab

�
1 +

2

c2
W

�
+ O(c�4) :

Here W = W (T;X) is the post-Newtonian gravitational potential in the geo-
centric system and W

a(T;X) is the corresponding vector potential. These geo-
centric potentials should be split into two parts: potentials WE and W a

E
arising

from the gravitational action of the Earth and external parts Wext and W
a

ext due
to tidal and inertial e�ects. The external parts are assumed to vanish at the
geocenter and admit an expansion into positive powers of X. Explicitly,

W (T;X) = WE(T;X) +Wext(T;X) ;

W
a(T;X) = W

a

E
(T;X) +W

a

ext(T;X) : (8)

The Earth's potentials WE and W a

E
are de�ned in the same way as wE and wi

E

but with quantities calculated in the GCRS. We may write

Wext = Winer +Wtidal ;

W
a

ext = W
a

iner +W
a

tidal : (9)

Here, Winer and W
a

iner
are inertial contributions that are linear in X

a

Winer = QaX
a
;

W
a

iner =
1

4
c
2
"abc(


b
� 
b

iner)X
c + O(c�2) : (10)

Qa characterizes the deviation of the actual worldline of the origin of the GCRS
from geodesic motion in the external gravitational �eld that is determined mainly
by the coupling of the Earth's nonsphericity to the external potential. To New-
tonian order Qa is given by

Qa = R
a

i

�
@

@xi
w
ext
� a

i

E

�
+ O(c�2): (11)
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Here, xi
E
(t); vi

E
(t) = dx

i

E
=dt and a

i

E
= dv

i

E
=dt are the barycentric coordinate

position, velocity and acceleration of the origin of the GCRS (geocenter). R
a

i

is a rotation matrix that determines the relative orientation of barycentric and
geocentric spatial coordinate lines. 
a is a slowly varying function of time related
to Ra

i
by

�abc

b = _Ra

k
R
c

k ; (12)

and 
a

iner mainly describes the geodetic precession of inertial axes with respect
to remote objects. One sees that for 
a = 
a

iner
the vector potential W a

iner

vanishes. This implies that dynamical equations of motion, e.g., for a satellite
around the Earth, do not contain Coriolis and centrifugal terms, i.e., the local
geocentric spatial coordinates Xa are dynamically non-rotating. Recommended,
however, is the use of kinematically non-rotating geocentric coordinates de�ned
by 
a = 0, i.e., by Ra

i = �ai.
W

tidal
a

is a generalization of the Newtonian tidal potential

W
Newton
tidal (T;X) = wext(xE +X)� wext(xE)�X

a
@

@Xa
wext(xE) : (13)

Full post-Newtonian expressions for Wtidal and W
a

tidal
can be found in DSX II,

IV.
Finally, the local gravitational potentials WE and W

a

E
of the Earth are

related to the barycentric gravitational potentials wE and w
i

E
by

WE(T;X) = wE(t;x)

�
1 +

1

c2
2v2

E

�
�

4

c2
v
i

E
w
i

E
(t;x) +O(c�4);

W
a

E
(T;X) = R

a

i

�
w
i

E
(t;x)� v

i

E
wE(t;x)

�
+ O(c�2): (14)

3.3. Transformations between the reference systems

The coordinate transformations between the BCRS and GCRS can be written
as

T = t �

1

c2

�
A(t) + v

i

E
r
i

E

�
+
1

c4

�
B(t) + B

i(t) ri
E
+ B

ij(t) ri
E
r
j

E
+ C(t;x)

�
+O(c�5); (15)

X
a = �ai

�
r
i

E
+

1

c2

�
1

2
v
i

E
v
j

E
r
j

E
+ wext(xE)r

i

E
+ r

i

E
a
j

E
r
j

E
�

1

2
a
i

E
r
2
E

��
+O(c�4); (16)

where

d

dt
A(t) =

1

2
v
2
E
+ wext(xE);



Report of the Working Group RCMA 289

d

dt
B(t) = �

1

8
v
4
E
�

3

2
v
2
E
wext(xE) + 4 vi

E
w
i

ext +
1

2
w
2
ext(xE);

B
i(t) = �

1

2
v
2
E
v
i

E
+ 4wi

ext(xE)� 3 vi
E
wext(xE);

B
ij (t) = �v

i

E
R
a

j
Q
a + 2

@

@xj
w
i

ext(xE)� v
i

E

@

@xj
wext(xE) +

1

2
�
ij _wext(xE);

C(t;x) = �

1

10
r
2
E
( _ai

E
r
i

E
) :

Let us remark that the harmonic gauge condition does not �x the function C
uniquely. Here we have indicated the simplest solution. Though the theoretical
domain of validity of the GCRS coordinates is quite large (larger than the size
of the solar system) the spatial region where the GCRS coordinates are to be
used in practice, should be restricted to the immediate vicinity of the Earth. We
suggest here that the GCRS coordinates be used only to about the geostationary
orbit, that is, for jXj < 50000 km. The size of this region allows one to estimate
the terms in the transformations and to neglect those terms which are smaller
than the targeted accuracy. Thus, it is easy to see that in the transformations
between coordinate times c�4C < 0:1 ps for jXj < 0:1 AU and can be neglected

for most applications. In the same way, one can show that c�4Bij
r
i

E
r
j

E
< 0:1

ps for jXj < 0:01 AU and also can be neglected for most purposes. However, to
avoid ambiguities one should remember that the terms O(r2

E
) are �xed in the

time transfromations and neglected only because of their small numerical values
in the considered region of space.

3.4. Multipole expansions of the local gravitational potentials

For many problems it is advantageous to present the local gravitational poten-
tials of the Earth as multipole series that usually converge everywhere outside
the Earth. The de�nition of corresponding post-Newtonian multipole moments
or potential coe�cients is not obvious from the very beginning. However, a cer-
tain set of potential coe�cients, called Blanchet-Damour moments, de�ned to
�rst post-Newtonian order has especially attractive features. Moreover, by using
such Blanchet-Damour potential coe�cients we get the simplest possible form
of the multipole expansion of the post-Newtonian potentials (these expansions
take an almost Newtonian form). Basically two sets of BD-moments occur in
the formalism: mass-multipole moments and (mass) current multipole moments.
Expressed in terms of (symmetric and trace-free) Cartesian tensors they are de-
noted by ML and SL. Here L stands for a Cartesian multi-index, L = i1 : : : il

and each index i runs over the three spatial indices. The setML is equivalent to
a set of potential coe�cients Clm and Slm that appear in a spherical harmonic
expansion of the potentials. The �rst spin-moment of a body agrees with its spin
or total angular momentum. The multipole expansion of WE and W a

E
reads (a

dot indicates the time derivative):
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WE = G

1X
l=0

(�1)l

l!

�
ML @L

1

jXj
+

1

2c2
�
ML @LjXj

�
+

4

c2
�;T + O(c�4);

W
a

E
= �G

1X
l=1

(�1)l

l!

�
_MaL�1@L�1

1

jXj
+

l

l + 1
"abcScL�1@bL�1

1

jXj

�
� �;a

+O(c�2); (17)

where

� = G

1X
l=0

(�1)l

(l+ 1)!

2l+ 1

2l+ 3
PL @L

1

jXj
;

PL =

Z
V

�a
X̂

aL
d
3
X;

and

�(T;X) = T
00 +

1

c2
T
ss
; �a(T;X) =

1

c
T
0a
;

T
�� = T

��(t; xi) are the components of the energy-momentum tensor in the
GRS.

The function � does not enter the post-Newtonian equations of motion. The
latter contains only the BD multipole moments ML and SL. The only place
where the function � should be accounted for is the transformation between the
proper time of an observer and the coordinate time of the GRS. First estimates
indicate that the �-terms will be negligible in the foreseeable future. For these
reasons the gauge function � will not be mentioned in the recommendations.

A spherical harmonic expansion of WE reads (R = jXj)

W
E(T;X) =

GME

R

h
1 +

1X
l=2

+lX
m=0

�
RE

R

�
l

Plm(cos �)(Clm(T;R) cosm�

+Slm(T;R) sinm�)
i
+

4

c2
@T�+O(c�4) (18)

with

C
E

lm
(T;R) = C

E

lm
(T )�

1

2(2l� 1)

R
2

c2

d
2

dT 2
C
E

lm
(T );

S
E

lm
(T;R) = S

E

lm
(T )�

1

2(2l� 1)

R
2

c2

d
2

dT 2
S
E

lm
(T ) :
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Here the relativistic time derivative terms are not expected to play some inter-
esting role in the near future; they will not be mentioned in the corresponding
recommendation. The gravitomagnetic vector potential of the Earth, W a

E
, is

dominated by the Earth's spin-vector SE (total angular momentum), i.e., to a
good approximation

W
E
a
(T;X) ' �

G

2

(X� SE)
a

R3
� �;a :

Note that this representation of the geocentric metric correctly yields the Schwarz-
schild and Lense-Thirring accelerations in satellite motion to �rst PN-order as
recommended e.g., by the IERS Conventions 2000.

3.5. The barycentric metric in the mass-monopole approximation

For many applications it is su�cient to keep the mass-monopoles of the various
bodies only, i.e. to put

ML = 0 for l � 1; SL = 0 for l � 1

for all bodies and to keep the masses MA � MA only. Furthermore, we will
assume all moments PL to vanish. From the transformation rules for the metric
potentials one derives the metric in the barycentric coordinate system in the
form

g00 = �1 +
2

c2
w0(t;x)�

2

c4
(w2

0(t;x) + �(t;x));

g0i = �

4

c3
wi(t;x); (19)

gij =

�
1 +

2w0(t;x)

c2

�
�ij ;

where

w0(t;x) �
X
A

GMA

rA

; (20)

and

�(t;x) =
X
B

�B(t;x); (21)

with

�B(t;x) =
GMB

rB

0
@�3

2
v
2
B
+
X
C 6=B

GMC

rCB

1
A � 1

2
GMB rB;tt

=
GMB

rB

2
4�2v2

B
+
X
C 6=B

GMC

rCB
+
1

2

 
(rk
B
v
k

B
)2

r2
B

+ r
k

B
a
k

B

!35 : (22)



292 So�el

Futhermore, in our approximation

wi(t;x) =
X
B

GMB

rB
v
i

B
: (23)

Note, that the post-Newtonian Einstein-Infeld-Ho�mann equations of motion
for a system of mass-monopoles that form the basis of modern solar system
ephemerides can be derived from that form of the barycentric metric. Thus,
the barycentric mass-monopole metric given above is already in use for the
description of solar system dynamics.
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